Supernumerary ice-crystal halos?

Michael V. Berry

Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice
crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a
fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the
rainbow. However, the universal curve that describes diffraction is different from the rainbow’s Airy
function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo
(and even fainter fringes outside); these are much smaller than their counterparts on the light side of

rainbows. If the crystals have no preferred orientation (as in the 22° halo), the geometric singularity is a
step. In this case the universal diffraction function has no maxima, and its supernumeraries are

shoulders rather than maxima.

The low contrast of the fringes is probably the main reason why

supernumerary halos are rarely if ever seen.

1. Introduction

It is well known'2 that both rainbows and ice-crystal
halos are consequences of the minimum deviation of
sunlight. The origins of the minima are, however,
different in the two cases. In the rainbow, the rays
through an individual raindrop have a minimum
deviation at a directional caustic (corresponding to
the Descartes ray), whereas in halos the rays through
each crystal form a collimated beam, and the mini-
mum is over beams from differently oriented crystals
(this is the same phenomenon as the minimum
deviation of a beam by a rotated prism, e.g., on a
spectrometer turntable). In spite of this difference,
at the level of geometric optics rainbows and halos
share the property that their differential scattering
cross sections, as functions of the deviation angle,
possess singularities. For rainbows, this is an in-
verse square root (arising from the Jacobian of the
mapping between angles of incidence and deviation,
that is, from x to x2). For halos, the form of the
singularity (see Section 2) can be an inverse square
root or a step, depending on the nature of the
distribution of crystal orientations.

Geometric optics fails on fine scales, and in the case
of the rainbow the intensity singularity is softened by
diffraction according to Ai%{—p}, where Ai is the Airy
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function® and p is a scaled rainbow-crossing coordi-
nate. The oscillations of Ai%{—p} are the interference
fringes that are visible as supernumerary rainbows
on the bright side of the geometric maximum (p > 0).
It is natural to ask what are the analogous diffraction
modifications of the geometric singularities for halos
and in particular whether there are supernumerary
halos. These are the questions addressed here.

Minnaert* claimed that supernumerary halos ‘“‘have
been seen at times” but gave no details. Visser?
employed diffraction theory to calculate their direc-
tions and claimed that diffraction is responsible for
the observed wide variations in halo colors. I know
of no recent evaluation of these claims, but the
calculations that follow make it seem unlikely that
halo fringes have been seen in nature. Konnen’
suggests that observations previously interpreted as
supernumerary halos might instead be of halos with
unusual radii produced (geometrically) by pyramidal
crystals; a particularly striking example was analyzed
by Neiman.8

Given the different mechanisms for the minimum
deviation, it is not surprising that the forms of the
diffraction cross sections turn out to be different for
halos than for rainbows, but it is a little surprising
that the halo cross sections share the rainbow prop-
erty of depending on functions of a single variable,
which can be evaluated in closed form. The univer-
sal halo functions are calculated for two idealized
crystal orientation distributions, called case I and
case II. In case I (Section 3) plate crystals share a
common axis perpendicular to the incident beam, and
their orientation depends on a single angle describing
rotation about this axis; this distribution corresponds
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to parhelia (sun dogs). In case II (Section 4), the
axes too are randomly oriented; for pencil crystals
this distribution corresponds to the common 22° halo.
Both halo diffraction functions are compared with
their rainbow counterpart, and their properties are
used to show why supernumerary halos are not
common.

2. Geometric Singularities

Attention is restricted to an idealized model involving
refraction by (truncated) 60° prisms in randomly
oriented hexagonal crystal columns or plates. A
collimated beam of monochromatic light strikes a
prism face oriented near minimum deviation. Only
directions close to minimum deviation are considered,
so the variation of the Fresnel reflection coefficient
can be ignored. Polarization effects®1? are also ig-
nored.

In case I, all crystals share a common (vertical)
symmetry axis that is parallel to the edges of the
effective 60° prisms. The prisms are randomly ro-
tated about their edges. Assume for simplicity that
the incident sunlight is perpendicular to the edges,
i.e., horizontal or almost so, so there are no skew rays.
(The theory is almost the same for higher Sun
elevations when there are skew rays; the essential
point is the common axis, which ensures that the
skewness is constant.) Let the angle of incidence on
a crystal be

i= imin + "” (1)

where i, (=40.92° for the refractive index 1.31
corresponding to yellow light) corresponds to mini-
mum deviation, and {§, which describes the orienta-
tion, is small. The deviation angle of the emergent
beam is

Dgeom = Diin + AY? + higher terms, 2)
where D,;, is the geometric halo angle (i.e., the
minimum deviation, equal to 21.84°) and A is a
constant.

Each crystal contributes a beam described by a
delta function in the direction Dgeom, so the intensity
generated by the whole collection is the average over
orientations . Thisis

(Igeom, I(D» = f dll’ S(D - Dmin - A‘bz)

1
=g@f§fﬁﬁmD“Dm% (3)

where O denotes the unit step (the integration range
has been extended to infinity because the only signifi-
cant orientations are those near minimum deviation,
where it is essential that the orientation distribution
is smooth). The singularity here, at each of the
minimum deviation spots on either side of the Sun
(i.e., the parhelia), is exactly the same as that at the
caustic line of the rainbow, in spite of the two
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different mechanisms for the formation of this singu-
larity.

In case II, the axes of the prisms are random as
well, so that it is necessary to consider skew rays.
An important observation, first made clearly by Kon-
nen,? is that this alters the nature of the singularity.
Let the prism axis make an angle x + /2 with the
incident direction; thus x measures the skewness.
The deviation angle now depends on x as well as on {,
but not on the third angle that specifies the orienta-
tion of the prism, say, &, which describes rotations of
the edge about the incident direction. It is known!
that

Dgeom = Dy, + AY? + Bx? + higher terms.  (4)
Instead of Eq. (3), we have

<Igeom, H(D)) = J‘ dl" f dX S(D - Dmin - A¢2 - BX2)

™

=a5m9w—Dm) (5)
Because of the randomness in ¢, this singularity
forms a circular arc around the Sun, which is, of
course, the 22° halo. The fact that the singularity is
weaker—a finite step rather than a divergence—is a
reason why these halos are less prominent than
rainbows (another reason is that halos, unlike rain-
bows, are on the bright side of the sky).

3. Diffraction for Case | (Parhelia)

Now we assume that the wavelength \ of the light is
much smaller than the crystal diameter d (assumed
the same for all crystals). Inthe simplest approxima-
tion, diffraction spreads the beams emerging from
each crystal, the spreading in D being that from a slit
whose width is approximately w = d cos ippn/2 =
0.38d. Thus the intensity from a given crystal is
proportional to

w
ID) = ”)\—[

sin[mw(D — Dygeom)/ )\]]2 - )

TW(D — Dgeom) /N

[The normalization is chosen to make I(D) —
3(D — Dygeom) in the geometric-optics limit A — 0.]

For case I we have, instead of the geometric average
of Eq. (8), the diffraction intensity

w [ sin[mw(D — Dyin — AY?)/M]|?
<II(D)> = Xf_ d [ 70D — Doy — AV)/N ] '
(7)
Scaling now gives
1/2
(D)) = (g) pn), 8)
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bright side of the geometric caustic, whereas there
are supernumerary parhelia on both sides of the edge,
with higher contrast on the dark side (Fig. 1).

Second, the separation of supernumerary rainbows
scales as \2/3, whereas that of supernumerary parhe-
lia scales as \, so parhelion fringes are much closer
than rainbow fringes for a crystal and a drop with the
same diameter d (provided d > \). The separation
of the first two Airy intensity maxima is

N\2/3
AD = 1.7641 (a-) ) (16)

whereas parhelion fringe maxima are separated by
[cf. Eq. (9) with An = )

A
AD = 2.647 5 (17)

An important value is AD = 0.5° the diameter of the
Sun, which happens to be similar to AD ~ 0.6° for the
geometric color broadening arising from refractive
dispersion. Then, for A = 600 nm, Eq. (16) shows
that supernumerary rainbows are quenched for drops
larger thand ~ 1.7 mm, whereas Eq. (17) shows that
supernumerary parhelia are eliminated for crystals
larger than d ~ 0.18 mm. However, it is known!?
that halos (and, presumably, parhelia as well) can be
formed by crystals several times smaller than this, so
their supernumeraries would not be quenched in this
way.

Third, the contrast of rainbow fringes is much
greater than that of parhelia. The minima of Ai%(—p)
are zeros, so supernumerary rainbows have contrast
unity. On the other hand, we have seen that the
contrast of parhelion fringes is at most 0.178. The
low value means that supernumerary parhelia are
more vulnerable to quenching by variations in the
size of ice crystals. I think this is the main reason
why supernumeraries are not normally seen in parhe-
lia, whereas supernumerary rainbows are frequently
seen (especially near the rainbow top!?). However,
supernumerary parhelia ought to be observable in the
laboratory, for example in monochromatic collimated
light scattered by a small rapidly spinning prism or
crystal.

Fraser!4 shows simulations of the intensity distribu-
tion across the 22° halo for different sizes of crystal,
using the same physical theory as that presented here
for parhelia (and in particular neglecting skew rays),
with the additional feature that the variation of the
Fresnel coefficients is included. Measurements on
his Fig. 2 show that his logarithmic curves can be
scaled with the variables of Egs. (9) to fit the univer-
sal formula of Eq. (11) and so have the universal
shape of Fig. 1(b).

4. Diffraction for Case Il (22° Halos)

To include skew rays, we simply replace the delta
function in the geometric average of Eq. (5) by the slit
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diffraction function of Eq. (6). This gives
1oy =2 [ ay [ o TP Do/
(18)
After scaling [cf. Eq. (8)], we obtain
(In(D)) = 7 b, (19)

where 7 is as given in Egs. (9), and k(n) is

h(n) =;1-éf°° du fw dv[iifl(liziz;z@r- (20)

m-—ut-v

This is the universal halo function that describes
diffraction softening of the geometric step of Eq. (5),
whose properties are now examined. First note that
h(m) depends on a single scaling variable m, which
does not involve the parameters A and B describing
the sharpness of the minimum deviation. Second,
the function is easily evaluated by transforming to
polar coordinates in the u, v plane and integrating by

parts. Theresultis
1 sin’m  Si(2q)
M =g- oS
where Si denotes the sine integral? defined by
. ? sinz
Si(z) = J. dz—- (22)
0 z
Third, the limiting forms are
1 sin(27)
hin) = 1 -5 = Py (m > 1),
=1/2 (m=0),
1 sin(27)
T 2mm 2mn? (< -1). (23)

These limits incorporate the geometric step, as, from
Egs. (9), small \ implies large |n|. The sine terms in
Egs. (23) describe the supernumerary halos. As
with parhelia, these occur on both sides of the step, at
m=nuw(n =0).

Fourth, the supernumeraries are shoulders, that is

zero-slope inflections, rather than maxima. This is
because Eq. (21) implies

d sin? m

g ) =5 (24

which is never negative. These faint supernumer-
ary fripges can be seen in the graphs of k() and log
h(n) (Fig. 2).
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Fig. 2. (a) Universal halo diffraction function h(n) [Eq. (21)], (b)

logarithm of h(n).

The remarks in the penultimate three paragraphs
of Section 3, which contrast supernumerary parhelia
with their rainbow counterparts, also apply to the
supernumerary halos described by (). Indeed, the
argument that supernumerary parhelia are unlikely
to be observed because of their low contrast applies
more strongly to supernumerary halos, because, as
has just been explained, these have zero intensity
contrast.

5. Concluding Remarks

Using idealized models for the simplest cases, I have
calculated halo difraction functions in the asymptotic
regime of directions close to the geometric singulari-
ties for crystals that are large in comparison with the
wavelength of light, and I have argued that the
supernumerary fringes predicted by these functions
are too weak to be observed. The fringes will be even
weaker in circumstances in which these idealizations
break down, such as crystals larger than 0.18 mm,
large variations in crystal size, or’ variations in the
angles between crystal faces that occur while crystals
are growing.

But supernumeraries are not the only effect of
diffraction. Another is broadening of the main maxi-
mum onto the geometrically dark side. From Figs. 1

and 2 this is of the same order of magnitude as that of
Eq. (17) and so is probably visible, as Visser argued,>$
in spite of broadening from the Sun and dispersion,
for crystals smaller than d ~ 0.18 mm, even when the
supernumerary parhelia and halos are obscured by
variations in crystal size.

More generally, it is interesting to consider the
geometry of halos and related phenomena from the
standpoint of singularity theory. I think that this
subject is not completely understood, although consid-
erable progress has been made by Tape.!516 In the
case of caustics, that is, focal singularities of smooth
families of rays, of which the rainbow is an example,
the singularities are those of catastrophe theory.l”
This provides a classification that enables compli-
cated caustics to be understood. We can ask whether
the same mathematics can be employed to classify
more complicated halos. It cannot. Although both
caustics and halos are singularities of smooth maps,
the map for halos (linking crystal orientation to beam
deflection) is not of the gradient type assumed in
catastrophe theory. In two dimensions (that is, on
the sky) all smooth maps share line and cusp singulari-
ties, and some halos do indeed show cusps.1%1¢ But
with additional parameters (such as the elevation of
the Sun), the singularities of gradient and nongradi-
ent mappings are different.!® Therefore we do not
expect to see halos involving some of the higher
catastrophes, such as umbilics, or sections close to
their singularities. However, swallowtail singulari-
ties are stable in both gradient and nongradient maps
from R® — R3, and it is surprising that neither this
singularity nor its characteristic two-cusped, self-
crossing section appears in any of the numerous
simulations of halos.

A related problem concerns the circumstances in
which the geometric intensity singularities are steps
or inverse-square-root divergences or singularities of
another sort. I agree with Kénnen and Tinbergen’s
conjecturel® that the step is the generic case. For
example, the inverse square root for parhelia is
unstable in the sense that it is replaced by a (large)
step if there is any randomness in the distribution of
crystal axis directions (physically, this instability is
important only if the variation in direction exceeds
the diffraction spreading of the singularity).

Finally, it is worth noting that caustics and the halo
mechanisms elaborated here do not exhaust the
possibilities for producing geometric singularities.
For example, it appears that the inverse-square-root
singularity shared by rainbows and parhelia can also
arise directly from a singularity in the distribution of
crystal orientations, as in the rare Bottlinger’s rings,
formed by reflection, around the subsun.®

I thank R. G. Greenler for encouraging me to carry
out the calculation reported here, G. P. Konnen for
pointing out a serious error in an early version of this
paper and for some helpful references, and J. F. Nye
for a thorough reading of the manuscript and several
suggestions.
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