
Supernumerary ice-crystal halos? 

Michael V. Berry 

Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice 
crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a 
fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the 
rainbow. However, the universal curve that describes diffraction is different from the rainbow’s Airy 
function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo 
(and even fainter fringes outside); these are much smaller than their counterparts on the light side of 
rainbows. If the crystals have no preferred orientation (as in the 22” halo), the geometric singularity is a 
step. In this case the universal diffraction function has no maxima, and its supernumeraries are 
shoulders rather than maxima. The low contrast of the fringes is probably the main reason why 
supernumerary halos are rarely if ever seen. 

1. Introduction 
It is well known1,2 that both rainbows and ice-crystal 
halos are consequences of the minimum deviation of 
sunlight. The origins of the minima are, however, 
different in the two cases. In the rainbow, the rays 
through an individual raindrop have a minimum 
deviation at a directional caustic (corresponding to 
the Descartes ray), whereas in halos the rays through 
each crystal form a collimated beam, and the mini- 
mum is over beams from differently oriented crystals 
(this is the same phenomenon as the minimum 
deviation of a beam by a rotated prism, e.g., on a 
spectrometer turntable). In spite of this difference, 
at the level of geometric optics rainbows and halos 
share the property that their differential scattering 
cross sections, as functions of the deviation angle, 
possess singularities. For rainbows, this is an in- 
verse square root (arising from the Jacobian of the 
mapping between angles of incidence and deviation, 
that is, from x to x2). For halos, the form of the 
singularity (see Section 2) can be an inverse square 
root or a step, depending on the nature of the 
distribution of crystal orientations. 

Geometric optics fails on fine scales, and in the case 
of the rainbow the intensity singularity is softened by 
diffraction according to Ai2{ -p}, where Ai is the Airy 
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function3 and p is a scaled rainbow-crossing coordi- 
nate. The oscillations of Ai2{ - p} are the interference 
fringes that are visible as supernumerary rainbows 
on the bright side of the geometric maximum (p > 0). 
It is natural to ask what are the analogous diffraction 
modifications of the geometric singularities for halos 
and in particular whether there are supernumerary 
halos. These are the questions addressed here. 

Minnaert4 claimed that supernumerary halos “have 
been seen at times” but gave no details. Visser5,6 
employed diffraction theory to calculate their direc- 
tions and claimed that diffraction is responsible for 
the observed wide variations in halo colors. I know 
of no recent evaluation of these claims, but the 
calculations that follow make it seem unlikely that 
halo fringes have been seen in nature. Konnen7 
suggests that observations previously interpreted as 
supernumerary halos might instead be of halos with 
unusual radii produced (geometrically) by pyramidal 
crystals; a particularly striking example was analyzed 
by Neiman! 

Given the different mechanisms for the minimum 
deviation, it is not surprising that the forms of the 
diffraction cross sections turn out to be different for 
halos than for rainbows, but it is a little surprising 
that the halo cross sections share the rainbow prop- 
erty of depending on functions of a single variable, 
which can be evaluated in closed form. The univer- 
sal halo functions are calculated for two idealized 
crystal orientation distributions, called case I and 
case II. In case I (Section 3) plate crystals share a 
common axis perpendicular to the incident beam, and 
their orientation depends on a single angle describing 
rotation about this axis; this distribution corresponds 
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to parhelia (sun dogs). In case II (Section 4), the 
axes too are randomly oriented; for pencil crystals 
this distribution corresponds to the common 22O halo. 
Both halo diffraction functions are compared with 
their rainbow counterpart, and their properties are 
used to show why supernumerary halos are not 
common. 

2. Geometric Singularities 
Attention is restricted to an idealized model involving 
refraction by (truncated) 60’ prisms in randomly 
oriented hexagonal crystal columns or plates. A 
collimated beam of monochromatic light strikes a 
prism face oriented near minimum deviation. Only 
directions close to minimum deviation are considered, 
so the variation of the Fresnel reflection coefficient 
can be ignored. Polarization effectsgJO are also ig- 
nored. 

In case I, all crystals share a common (vertical) 
symmetry axis that is parallel to the edges of the 
effective 60” prisms. The prisms are randomly ro- 
tated about their edges. Assume for simplicity that 
the incident sunlight is perpendicular to the edges, 
i.e., horizontal or almost so, so there are no skew rays. 
(The theory is almost the same for higher Sun 
elevations when there are skew rays; the essential 
point is the common axis, which ensures that the 
skewness is constant.) Let the angle of incidence on 
a crystal be 

i = imi* + *p 0) 
where imin (= 40.92’ for the refractive index 1.31 
corresponding to yellow light) corresponds to mini- 
mum deviation, and $, which describes the orienta- 
tion, is small. The deviation angle of the emergent 
beam is 

D geom = Dmin + Ae2 + higher terms, (2) 

where Dmin is the geometric halo angle (i.e., the 
minimum deviation, equal to 21.84”) and A is a 
constant. 

Each crystal contributes a beam described by a 
delta function in the direction Dgeom, so the intensity 
generated by the whole collection is the average over 
orientations +. This is 

1 
= [A(D _ Dmin)]1/2 ‘(’ - Dmin)9 (3) 

where 8 denotes the unit step (the integration range 
has been extended to infinity because the only signifi- 
cant orientations are those near minimum deviation, 
where it is essential that the orientation distribution 
is smooth). The singularity here, at each of the 
minimum deviation spots on either side of the Sun 
(i.e., the parhelia), is exactly the same as that at the 
caustic line of the rainbow, in spite of the two 

different mechanisms for the formation of this singu- 
larity. 

In case II, the axes of the prisms are random as 
well, so that it is necessary to consider skew rays. 
An important observation, first made clearly by Ken- 
nen,g is that this alters the nature of the singularity. 
Let the prism axis make an angle x + 7r/2 with the 
incident direction; thus x measures the skewness. 
The deviation angle now depends on x as well as on $, 
but not on the third angle that specifies the orienta- 
tion of the prism, say, +, which describes rotations of 
the edge about the incident direction. 
that 

It is known 

D geom = Dmin + Ae2 + Bx2 + higher terms. (4) 

Instead of Eq. (3), we have 

(Igeom, Ido)> = Srn d* jm dX s(D - Dmin - A*2 - BX2) 
-CO -00 

-- - (AB;‘/2 6(D - Dmin)* (5) 

Because of the randomness in +, this singularity 
forms a circular arc around the Sun, which is, of 
course, the 22’ halo. The fact that the singularity is 
weaker-a finite step rather than a divergence-is a 
reason why these halos are less prominent than 
rainbows (another reason is that halos, unlike rain- 
bows, are on the bright side of the sky). 

3. Diffraction for Case I (Parhelia) 
Now we assume that the wavelength X of the light is 
much smaller than the crystal diameter d (assumed 
the same for all crystals). In the simplest approxima- 
tion, diffraction spreads the beams emerging from 
each crystal, the spreading in D being that from a slit 
whose width is approximately w = d cos imin/2 = 

0.38d. Thus the intensity from a given crystal is 
proportional to 

w 
I(D) 

sin[nw(D - Dgeom)/h] 
I 

2 -- 
l 

- 
x TWCD - Dgeom)/h 

(6) 

[The normalization is chosen to make I(D) --+ 
6(D - Dgeom) in the geometric-optics limit X + 0.1 

For case I we have, instead of the geometric average 
of Eq. (3), the diffraction intensity 

Scaling now gives 

(8) 
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where singularity of Eq. (3) in the limit X -+ 0 [after the 
scalings of Eqs. (8) and (9)] are 

l-187(0 - Dmi,)d = rl- 9 
x 

The sine terms in expressions (13) describe supernu- 
merary parhelia; note that these occur on both sides 
of the geometric edge q = 0. 

Fifth, the graph of p(q) (Fig. 1) indicates that the 
supernumerary parhelia are of very low contrast and 
barely visible on the bright side (q > 0) of the halo. 
Even on the dark side, the maximum contrast is only 
(P - pmin)/(pmm + pmin) = 0.178 (these values re- 
fermc the first minimum at q = -2.949 and the first 
subsidiary maximum at q = -4.020). 

There are several striking differences between the 
parhelion functionp(q) and its rainbow analog (insets 
in Fig. l), namely, Ai2( -p), where l1 for a drop of 9 
refractive index IZ and diameter d, 

Note that q > 0 corresponds to the geometrically 
bright sides of the parhelia. This gives the horizon- 
tal spreading across the geometric edge. [There will 
also be diffraction in the vertical, described by the 
same function as Eq. (6), with w replaced by the 
thickness of the crystal plates; this is not considered 
further.] 

The function p(q) is the parhelion analog of the 
Airy function, and we now examine its properties. 
First note that it depends on a single scaling variable 
q that does not involve the parameter A describing 
the sharpness of the minimum deviation. Second, 
note that a change of the integration variable gives 

( n2 
P = CD - Dmd (4 

l 
(15) 

First, supernumerary rainbows occur only on the showing that the cross section is the geometric singu- 
larity convolved with the slit diffraction function. 
Third, this observation enablesp(q) to be evaluated in 
closed form because the Fourier transforms of both 
components are known. A calculation gives 

cos 27-j + - 
P(T) ( 1) + q2 - 4c[2pi’“l 

= q(2ny2 2fi 

+ sign(q) ( 4s[2(y’2]] 9 2 + (11) 

where C and S denote the Fresnel integrals2 defined t . . . . . . . . . . 
O rl 5 10 

( > a 

C(z) + S(z) = [dtexp(igt2). (12) rl 
I . . . . . . . . . I . . . . . 

40 -5 
Fourth, the following limiting forms can easily be 

found from Eq. (11): 

7-r 
sin ( i 27j + -4 

-1.5 . 

-2 - 

1 
P(Y) z-- 

hi 

i 

4 -- - 
w- Tr h = o>, 

1 sin[2q + 4 z-- 
4bll 312 4~~(2n)l'~ 

(q << -1) (13) 
( w 

Fig. 1. (a) Thick curve, universal parhelion diffraction function 
p( ‘1) [Eq. ( 1 l)]; thin line; geometric-optics approximation [ approxi- 
mation (14)]; inset, the corresponding rainbow function Ai2( -p]. 
(b) Logarithm ofp(q): inset, logarithm of Ai2[ - p]. The terms that give rise to the geometric-optics 
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bright side of the geometric caustic, whereas there 
are-s upernu .merary-parhelia on both sides of th .e edge, 
with higher contrast on the dark side (Fig. 1). 

Second, the separation of supernumerary rainbows 
scales as h2j3 whereas that of supernumerary parhe- 
ha scales as i ‘9 so parhelion fringes are much closer 
than rainbow fringes for a crystal and a drop with the 
same diameter d (provided d X+ h). The separation 
of the first two Airy intensity maxima is 

A 2/3 
AD =1.7641 2 3 0 (16) 

whereas parhelion fringe maxima are separated by 
[cf. Eq. (9) with AT = 7~) 

x 
AD = 2.647~ (17) 

An important value is AD = 0.5", the diameter of the 
Sun, which happens to be similar to AD - 0.6’ for the 
geometric color broadening arising from refractive 
dispersion. Then, for X = 600 nm, Eq. (16) shows 
that supernumerary rainbows are quenched for drops 
larger than d - 1.7 mm, whereas Eq. (17) shows that 
supernumerary parhelia are eliminated for crystals 
larger than d - 0.18 mm. However, it is known2 
that halos 
formed by 

(and, presumably, parhelia as well) can 
crystals several times smaller than this, 

be 
so 

their supernumeraries would not be quenched in this 
way. 

Third, the contrast of rainbow fringes is much 
greater than that of parhelia. The minima of Ai2( - p) 
are zeros, so supernumerary rainbows have contrast 
unity. On the other hand, we have seen that the 
contrast of parhelion fringes is at most 0.178. The 
low value means that supernumerary parhelia are 
more vulnerable to quenching by variations in the 
size of ice crystals. I think this is the main reason 
why supernumeraries are not normally seen in parhe- 
lia, whereas supernumerary rainbows are frequently 
seen (especially near the rainbow top13). However, 
supernumerary parhelia ought to be observable in the 
laboratory, for example in monochromatic collimated 
light scattered by a small rapidly spinning prism or 
crystal. 

Fraser14 shows simulations of the intensity distribu- 
tion across the 22’ halo for different sizes of crystal, 
using the same physical theory as that presented here 
for parhelia (and in particular neglecting skew rays), 
with the additional feature that the variation of the 
Fresnel coefficients is included. Measurements on 
his Fig. 2 show that his logarithmic curves can be 
scaled with the variables of Eqs. (9) to fit the univer- 
sal formula of Eq. (11) and so have the universal 
shape of Fig. l(b). 

4. Diffraction for Case II (22” Halos) 
To include skew rays, we simply replace the delta 
function in the geometric average-of Eq. (5) by the slit 
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diffraction function of Eq. (6). This gives 

MD>> = 
sin[rw(D - Dgm,)/h 

nw(D - Dpeom>l~ 

(18) 
After scaling [cf. Eq. (S)], we obtain 

(19) 

where q is as given in Eqs. (9), and h(q) is 

This is the universal halo function that describes 
diffraction softening of the geometric step of Eq. (5), 
whose properties are now examined. First note that 
h(q) depends on a single scaling variable q, which 
does not involve the parameters A and B describing 
the sharpness of the minimum deviation. Second, 
the function is easily evaluated by transforming to 
polar coordinates in the u, u plane and integrating by 
parts. The result is 

hbl) 
1 sin2q Si(2q) =-- 
2 -+ -? 

*r) n= 

where Si denotes the sine integral2 defined by 

z sin z . 
w = - 

s 
dz 

0 z 

Third, the limiting forms are 

1 
hbl) 1 

sin( 2q) z - --- 
27’rrl 2mj2 

- - l/2 
1 sin(%q) z---- 

27 2TrT2 

(21) 

(22) 

bl = 0 
bl = o>, 
b-l e -1). (23) 

These limits incorporate the geometric step, as, from 
Eqs. (9), small X implies large I”Q~ I. The sine terms in 
Eqs. (23) describe the supernumerary halos. As 
with parhelia, these occur on both sides of the step, at 
q = 12Tr (n # 0). 

Fourth, the supernumeraries are shoulders, that is 
zero-slope inflections, rather than maxima. This is 
because Eq. (21) implies 

(24 

which is never negative. These faint supernumer- 
ary fringes can be seen in the graphs of h(q) and log 
hh) (Fig* 2). 



‘-‘i[--- 

and 2 this is of the same order of magnitude as that of 
Eq. (17) and so is probably visible, as Visser argued,5?6 
in spite of broadening from the Sun and dispersion 
forcrystalssmallerthand w 0 18mm evenwhenthe 
supernumerary parhelia and halos are obscured by 

0.6 
Y 

variations in crystal size. 
More generally, it is interesting to consider the 

geometry of halos and related phenomena from the 
standpoint of singularity theory. I think that this 
subject is not completely understood, although consid- 
erable progress has been made by Tape.15@ In the 
case of caustics, that is, focal singularities of smooth 

I families of rays, of which the rainbow is an example, 
-10 -5 rl 5 10 the singularities are those of catastrophe theory.17 

( > a This provides a classification that enables compli- 

rl 
cated caustics to be understood. We can ask whether 

1 . . . L 1. - . . . . - _ . the same mathematics can be employed to classify 
-10 -5 5 10 more complicated halos. It cannot. Although both 

caustics and halos are singularities of smooth maps, 
the map for halos (linking crystal orientation to beam 
deflection) is not of the gradient type assumed in 
catastrophe theory. In two dimensions (that is, on 
the sky) all smooth maps share line and cusp singulari- 

-1.25 di 
ties, and some halos do indeed show cusps.15716 But 
with additional parameters (such as the elevation of 
the Sun), the singularities of gradient and nongradi- 
ent mappings are different? Therefore we do not 

-1.5 expect to see halos involving some of the higher 
-1.75 catastrophes, such as umbilics, or sections close to 

(b) 
their singularities. However, swallowtail singulari- 

Fig. 2. (a) Universal halo diffraction function h(q) [Eq. (21)], (b) 
ties are stable in both gradient and nongradient maps 

logarithm of h(r). 
from R3 -+ R3, and it is surprising that neither this 
singularity nor its characteristic two-cusped, self- 

The remarks in the penultimate three paragraphs 
of Section 3, which contrast supernumerary parhelia 
with their rainbow counterparts, also apply to the 
supernumerary halos described by h(q). Indeed, the 
argument that supernumerary parhelia are unlikely 
to be observed because of their low contrast applies 
more strongly to supernumerary halos, because, as 
has just been explained, these have zero intensity 
contrast. 

5. Concluding Remarks 
Using idealized models for the simplest cases, I have 
calculated halo difraction functions in the asymptotic 
regime of directions close to the geometric singulari- 
ties for crystals that are large in comparison with the 
wavelength of light, and I have argued that the 
supernumerary fringes predicted by these functions 
are too weak to be observed. The fringes will be even 
weaker in circumstances in which these idealizations 
break down, such as crystals larger than 0.18 mm, 
large variations in crystal size, or7 variations in the 
angles between crystal faces that occur while crystals 
are growing. 

But supernumeraries are not the only effect of 
diffraction. Another is broadening of the main maxi- 
mum onto the geometrically dark side. From Figs. 1 

crossing section appears in any of the numerous 
simulations of halos. 

A related problem concerns the circumstances in 
which the geometric intensity singularities are steps 
or inverse-square-root divergences or singularities of 
another sort. I agree with Kijnnen and Tinbergen’s 
conjecture lo that the step is the generi 
example, the inverse squ .are root for 

.C case. For 
parhelia is 

unstable in the sense that it is replaced by a (large) 
step if there is any randomness in the distribution of 
crystal axis directions (physically, this instability is 
important only if the variation in direction exceeds 
the diffraction spreading of the singularity). 

Finally, it is worth noting that caustics and the halo 
mechanisms elaborated here do not exhaust the 
possibilities for producing geometric singularities. 
For example, it appears that the inverse-square-root 
singularity shared by rainbows and parhelia can also 
arise directly from a singularity in the distribution of 
crystal orientations, as in the rare Bottlinger’s rings, 
formed by reflection, around the subsun.lg 

I thank R. G. Greenler for encouraging me to carry 
out the calculation reported here, G. P. Konnen for 
pointing out a serious error in an early version of this 
paper and for some helpful references, and J. F. Nye 
for a thorough reading of the manuscript and several 
suggestions. 
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