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Abstract. Transparent overhead-projector foil is an anisotropic material with three different
principal refractive indices. Its properties can be demonstrated very simply by sandwiching the
foil between crossed polarizers and looking through it at any diffusely lit surface (e.g., the sky).
Coloured interference fringes are seen, organized by a pattern of rings centred on two ‘bullseyes’
in the directions of the two optic axes. The fringes are difference contours of the two refractive
indices corresponding to propagation in each direction, and the bullseyes are degeneracies where
the refractive-index surfaces intersect conically. Each bullseye is crossed by a black ‘fermion
brush’ reflecting the sign change (geometric phase) of each polarization in a circuit of the optic
axis. Simple observations lead to the determination of the three refractive indices, up to an ordering
ambiguity.

1. Introduction

Hamilton’s discovery of conical refraction in 1830 (Born and Wolf 1959) was a milestone in
the development of the classical picture of light as a transverse wave. The phenomenon was
an unexpected consequence of Fresnel’s theoretical analysis of the propagation of polarized
light in transparent anisotropic materials (in those days, the only such materials were crystals).
According to Fresnel’s theory, in any given direction two waves can propagate through the
material without change. The waves have different refractive indices and orthogonal linear
polarizations (we will not consider chirality here). However, there are four special directions,
specified by two optic axes (along which light can propagate either way), where the two
refractive indices are the same and the polarizations arbitrary, so that the material behaves as
if it is isotropic. Such general materials are called biaxial; in the special case where there is
one symmetry direction, the two axes coincide, and the material is uniaxial. If the refractive
indices are represented as two sheets in a polar plot (the wave surface), the optic axes are
singular directions where the sheets are connected. Locally the connection is like that of a
double cone (a diabolo). Hamilton pointed out that this singularity gives rise to several physical
phenomena, which were soon observed and studied in detail, and later incorporated into the
electromagnetic description of light.

Although well understood for more than a century (Pockels 1906, Hartshorne and Stuart
1960, Bloss 1961), the phenomena are not widely known to physicists, and are regarded as
obscure. This is a pity, because the connections of the cones are singularities of polarization
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optics, and so are, in a sense, at the heart of the subject. One reason for the lack of emphasis
on the conical effects might be that they are rarely seen; this in turn could be because their
observation was thought to require plates of biaxial crystal. One of our purposes here is to
describe an extremely simple demonstration (section 2), based on an observation made by one
of us (RB), by means of which some of the physics of optic axes and the associated cones can
be demonstrated and explored easily.

Notwithstanding the venerable physics, there are several reasons why such a demonstration
is timely, and the explanation of these is our other purpose. First, with light regarded as a
stream of photons, polarization phenomena provide fine illustrations of the fundamental ideas
of quantum state preparation, orthogonality, measurement, completeness and evolution; even
at the classical level, it is helpful to employ a notation (section 4) reminiscent of quantum
mechanics. Second, conical intersections are now being understood as organizing a wide
range of quantum phenomena in solid-state physics (Simon 1983) and chemistry (Herzberg
and Longuet-Higgins 1963, Teller 1937, Mead and Truhlar 1979), and it is good to recall
the optical context in which they first appeared. Third, the demonstration gives immediate
reality to some mathematical phenomena associated with matrices depending on parameters:
degeneracies of eigenvalues, singularities in the pattern of eigenfunctions, and eigenfunction
anholonomy (geometric phases). In our explanations, we will emphasize these phenomena,
and give only the outline of the standard optical theory (Born and Wolf 1959, Landauet al
1984) of biaxial materials.

2. Experiment

The apparatus is a ‘sandwich’ (figure 1). Its ‘bread’ is two squares of polaroid sheet with their
transmission directions perpendicular. Its ‘filling’ is a square of overhead-projector plastic
transparency foil. For individual viewing, the squares can be 3 cm×3 cm. For lecture
demonstrations, the squares should be about 30 cm×30 cm, and the whole sandwich kept flat
and rigid by a ‘wrapping’ of clear acrylic or glass panes.

Without the filling, the sandwich is simply a pair of crossed polaroids, and transmits no
light. But the inserted plastic foil is optically anisotropic—and biaxial because it has been
stretched two ways during manufacture (Keller 1998). Therefore the filled sandwich is not
black. The experiment consists in viewing it by transmitted diffuse light over a range of
directions. An individual viewer can do this by holding the sandwich close to one eye and
looking through it at a light-coloured wall, or the sky (figure 2(a)).

Brilliantly coloured patterns are seen. They are called conoscopic figures (Hartshorne
and Stuart 1960). Looking off to the side, it becomes clear that the colours are interference

polarizer 1 polarizer 2

transparent overhead-projector foil

L Figure 1. Structure of the black plastic sandwich.
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Figure 2. Observing the interference fringes. (a) Looking directly through the sandwich (the
diffuse reflector can be the sky); (b) by projection from a small bright source; (c) to an audience,
using an overhead projector.

fringes, organized about two sets of circles (‘bullseyes’) symmetrically disposed about the
normal to the foil, separated by several tens of degrees (the precise angle depends on the
type of foil). The bullseyes can be moved to the forward direction, where they can be seen
more easily, by tilting the sandwich so that its normal points away from the forward direction
(figure 2(a)). The complete pattern can be viewed by holding a small bright source of light
close to the sandwich, and projecting the image onto white paper on the other side (figure 2(b));
the bulb from a Mini MagliteTM torch, with its lens removed, is an ideal source. (Alternatively,
the complete pattern can be seen in the traditional way, with a polarizing microscope.) The
individual bullseyes can be demonstrated to a large audience using the (slightly) divergent light
of an overhead projector, by placing the (large) sandwich obliquely in the beam (figure 2(c)).

The patterns can be recorded in several ways. For their global structure, it is convenient
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(a)

(b) (c)

Figure 3. Conoscopic interference figures in monochromatic light. (a) Global structure, with
the fringes centred on two ‘bullseyes’ crossed by black ‘fermion brushes’; (b) a single bullseye;
(c) disconnection of brushes near bullseyes for polarizer orientation near 45◦.

(A colour image of a single bullseye is included in the electronic version of this article as an
additional figure 9 after the list of references on page 14; seehttp://www.iop.org)

to use an arrangement like that of figure 2(b), with the screen replaced by a camera attached to
a microscope with a wide-aperture objective lens; the details of the pattern—for example, the
individual bullseyes—can be seen by magnification. Alternatively, the individual bullseyes
can be photographed simply by replacing the eye in figure 2(a) by a camera aimed at the
sky. Figure 3(a) shows the pattern produced by monochromatic light, and figure 3(b) shows
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a magnification of one of the bullseyes. The main features, in addition to the interference
fringes, are broad black stripes passing through the bullseyes. For a reason to be explained
later, we call these thefermion brushes. The inclination of the brushes, relative to the line
joining the bullseyes, can be altered by rotating the foil relative to the crossed polaroids.

For some foils, and certain ranges of orientation of the polarizers, the fermion brushes
close to the bullseyes were disconnected (figure 3(c)). Superficially this resembles the effects
of optical activity (Gibbs 1882, Goldhammer 1892, Pocklington 1901), in addition to the
birefringence, which would break the degeneracy of the refractive indices at the optic axes.
However, the details seem incompatible with this hypothesis, both in the sensitivity to polarizer
orientation and the fact that the centre of the bullseye is always dark. J F Nye has suggested
that the disconnection might be caused by variation of the orientation of the optic axes along
the propagation path through the foil. This puzzling phenomenon (which we have not seen
described in the literature) would repay investigation; we do not consider it further here.

With plastic foils we did not succeed in seeing the original phenomenon of conical
refraction, namely the transformation of a narrow initial beam into a hollow cone (Born and
Wolf 1959). This is because the foil is too thin: a simple calculation shows that the broadening
is much less than the width of the laser beam we used, and attempts to use a stack of many
foils failed because of the gaps between them and the difficulty of aligning the optic axes of
successive foils.

3. Geometry and notation

Let the normal to the sandwich-filling foil define thez direction, and consider light travelling
within the foil in a direction specified by the unit vectors = {sx, sy, sz} (parallel to the
wavevector), with polar anglesθ, φ . The direction outside is obtained froms by a simple
refraction correction, to be given later. It will be convenient also to denote directions by points
on the planeR = {X, Y }, with polar coordinatesR, φ, obtained froms by stereographic
projection from the south pole of thes sphere (figure 4). The equations are

s = 1

1 +R2

{
2X, 2Y, 1− R2

}
R = tan 1

2θ. (1)

The two waves, + and−, with frequencyω and free-space wavenumberk = ω/c = 2π/λ,
which travel in thes direction, will be written as functions of positionr and timet in terms of
their electric vectorsD (transverse tos, unlike the electric field vectorE) as follows:

D±(s, r, t) = d±(s) exp{ikn±(s)s · r − ωt} (2)

wheren±(s) andd±(s) are, respectively, the refractive indices and (orthogonal) polarizations
of the waves. When we use the stereographic representation of directions, the same symbols

N
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Q'θ  s
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Figure 4. Stereographic projection of the wave direction
from the sphere of unit vectorss to the planeR, illustrated
for two pointsP andQ (imagesP ′ andQ′).
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Figure 5. Directions of eigenpolarizationd+. (a) On thes sphere, making an angleµ(s) with the
unit vectoreθ . (b) In theR plane, making an angleσ(R) with theX axis.

will be used, that isn±(R) and d±(R), with the understanding thatd±(R) means the
stereographically projected (and still orthogonal) polarizations. Where no confusion arises,
we will drop the labels + and−. The polarization vectord+(s) makes an angleµ(s) with
the unit vectoreθ on thes sphere (figure 5(a)), and its projection ontoR makes an angle
σ(R) = µ(R) + φ with theX axis (figure 5(b)), whereµ(R) = µ(s) (because the projection
preserves angles) (ford−, π/2 must be added to these angles). Thus

d+(s) = eθ cosµ + eφ sinµ d+(R) = eX cosσ + eY sinσ. (3)

Sinced and−d represent the same polarization, all physical quantities derived fromd must
be invariant under changes ofµ andφ by π .

The foil is an anisotropic transparent dielectric of thicknessL, specified by its constitutive
relation, which we write in the form

D = ε0n2E (4)

wheren2 is the dimensionless dielectric tensor, written in terms of the three principal refractive
indices as

n2 =

 n
2
x 0 0

0 n2
y 0

0 0 n2
z

 . (5)

We choose they axis such thatny is the intermediate-valued principal index; this will make
the bullseyes lie on theX axis. Moreover, we make the asumptionnx < nz, and will discuss
this at the end of section 6. Thus

nx < ny < nz. (6)

It will be convenient to define

α ≡ 1

n2
x

− 1

n2
y

β ≡ 1

n2
y

− 1

n2
z

. (7)

Although we shall work with exact formulae, we note that in the foilα � 1 andβ � 1.
Finally, the polarizers will be specified by their orientationsγ andγ + π/2 with respect

to theX axis.
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4. Theory: intensity variation

The observed pattern is the intensityI (R, γ ) of the light when it emerges from the sandwich
after travelling in the directionR, with the orientation of the polarizers specified byγ . When
calculatingI (R, γ ), it is convenient to use vectorsV to represent theD vector of the light as
it traverses the foil; we think ofV as the column vector representingD, and denote byV T the
corresponding row vector (transpose).V andV T are analogous to the ket and bra in quantum
mechanics; thus the dot productU · V can alternatively be writtenUTV .

The first polarizer projectsV onto a state of linear polarization, represented by a vector
P . In quantum mechanics, this step is the preparation of the state. As the light enters the
anisotropic foil, we resolve its stateP into components along the two eigenpolarizations
d±(R). These are complete and orthonormal, i.e.

d+(R)d
T
+(R) + d−(R)dT

−(R) = I

d±(R) · d±(R) = 1 d±(R) · d∓(R) = 0.
(8)

The resolution is

P = (d+(R)d
T
+(R) + d−(R)dT

−(R)
)
P = d+(R) · P d+(R) + d−(R) · P d−(R). (9)

The polarizations + and− propagate independently through the foil, and acquire phases
determined by their refractive indicesn±(R). The graphs of these two functions, either as
polar plots (that is, as radial distances for directions), or perpendicular to theR plane, are the
sheets of the refractive-index (wave) surface. Since the distance travelled in the foil is

L(s) = L

cosθ
≡ L(R) = L

(
1 +R2

1− R2

)
(10)

the polarizations become

d±(R)→ d±(R) exp{ikn±(R)L(R)} ≡ d±(R) exp{iχ±(R)} . (11)

In quantum mechanics, this step is the evolution of the state, governed by the Schrödinger
equations (here Maxwell’s equations). Thus the state after propagation through the foil, and
before entering the second polarizer, is

V (R) = d+(R) · P d+(R) exp{iχ+(R)} + d−(R) · P d−(R) exp{iχ−(R)} . (12)

The second polarizer projectsV onto a state represented by a vectorP , perpendicular to
the first polarizerP , i.e.

P · P = 0. (13)

In quantum mechanics, this step is the measurement of the state. The desired intensity is

I (R, γ ) = ∣∣P · V (R)∣∣2 (14)

and a short calculation using (8) and (13) leads to

I (R, γ ) = 4
[
d+(R) · P

]2[
d+(R) · P

]2
sin2 { 1

21χ(R)
}

(15)

where

1χ(R) ≡ χ+(R)− χ−(R) = kL(R)
[
n+(R)− n−(R)

]
. (16)

To calculate this intensity explicitly, it is convenient to imagine the foil as fixed, and the
orientation of the polarizers as variable. Let the first polarizer have orientationγ : this means
that it transmits light whose electricD vector is oriented at an angleγ to theX axis in the
R plane. The second polarizer transmits light in the perpendicular direction, i.e.γ + π/2.
Thus in equation (15)

P = (cosγ, sinγ ) P = (sinγ, − cosγ ). (17)
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With the polarizationd+(R) as defined in (3), equation (15) gives

I (R, γ ) = sin2 {2(γ − σ(R))} sin2 { 1
21χ(R)

}
. (18)

In equation (18), the second factor describes the fringes resulting from the interference
of the two polarizations that emerge from the foil, when projected onto the common stateP .
From equation (16), these fringes are approximately contours of difference of the two refractive
indices (theR dependence ofL gives only a small correction). The thicker the foil, or the
shorter the wavelengthλ, the closer the fringes. Because of theλ dependence, the fringes
are coloured (theλ dependence of the refractive indices, i.e. dispersion of the optic axes, is
a much smaller effect). Close to the conical singularities of the two refractive-index sheets
wheren+ = n−, the contours are closed loops (actually circles); these are the bullseyes that
reveal the singularities and dominate the images.

The first factor in (18) vanishes along the lines whereσ(R) = γ (modπ/2). These are the
black brushes, called isogyres, which therefore reveal the polarization directions atR: as the
crossed polarizers are rotated relative to the foil, the brushes sweep through all these directions.
We shall see that in a circuit of the singularity (inR space)σ changes byπ ; this implies that
for eachγ the brush crosses the bullseye in a single smooth line. Note that equation (18) is
unaltered ifγ or σ is changed byπ/2, reflecting invariance of the physics under exchange of
the two polarizersP andP or the two polarizationsd+ andd−.

5. Theory: fringes, isogyres and the fermion brush

With the electric vectorD (2), and the constitutive equation (4), Maxwell’s equations reduce
to

d(s) + n2(s)s× s× n−2d(s) = 0 (19)

whered denotesd+ or d−. Although this represents three linear equations, transversality
implies that the consistency condition (vanishing determinant of the operator in (19)) leads to
two, not three refractive indicesn(s) for eachs (the third would be infinite, corresponding to
electrostatic fields rather than waves). These two indicesn±(s) are given by the eigenvalues of
the part of the matrixn−2 transverse tos; the corresponding eigenvectors are the polarizations
d±(s).

A long calculation, using the first equation in (3) to representd, and the definitions
(5) and (7), leads to a formula in which the refractive index surfaces are conveniently expressed
in terms of the positions of the four optic axes. In theR plane, these are at

Y = 0 X = ±Xc, ± 1

Xc
Xc ≡

√
1 +

β

α
−
√
β

α
. (20)

On thes sphere, the axes are

φ = 0, π θ = θc, π − θc tanθc =
√
α

β
. (21)

The indices are
1

n2±(s)
= 1

n2
y

− α

2(1 +R2)2

{
H ±
√
G
}

H ≡ (X2 −X2
c)

(
X2 − 1

X2
c

)
− 4Y 2β

a

G ≡ 64X2Y 2β

a

(
1 +

β

a

)
+

[
H + Y 2

(
2(1 +X2) + 8

β

α
+ Y 2

)]2

.

(22)
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Figure 6. Refractive index surfaces in direction space,
showing the optic axis (degeneracy) where the surfaces
intersect conically.

This formula incorporates the following special cases, illustrated in figure 6 for an octant
of thes sphere:

X = Xc, Y = 0 (waves along optic axes): n+ = n− = ny
X = Y = 0 (waves alongez): n+ = ny, n− = nx
X = 1, Y = 0 (waves alongex): n+ = nz, n− = ny
X = 0, Y = 1 (waves alongey): n+ = nz, n− = nx.

(23)

Close to the optic axes, equation (22) can be simplified to display the form of the conical
intersections explicitly. We find

n±(R) ≈ ny
[
1 +C

{
±
√
(X −Xc)2 + Y 2 − (X −Xc)

}]

C ≡
√
(n2
y − n2

x)(n
2
z − n2

y)√
(n2
z − n2

x)
[√
(n2
z − n2

x)−
√
(n2
z − n2

y)
] . (24)

The fact that the coefficients of(X − Xc)
2 andY 2 in the square root are the same shows

that the cones are circular near their intersection (in both theR ands spaces).
The polarizations (isogyres)d are the eigenvectors defined by (19). Geometrically, these

are the principal axes of the ellipse defined by the intersection of the plane normal to s with
the indicatrix (Nye 1995). On thes sphere (figure 5(a)) these are specified by the angleµ(s).
A calculation from (19) gives

tan 2µ(s) = sin 2φ cosθ

(β/α) sin2 θ − cos 2φ cos2 θ
. (25)

This gives both polarizations (withµ values differing by 2π ). At the optic axes (21), the
numerator and denominator vanish, so that the pattern of isogyres is singular.

In the projective plane, whered is specified by the angleσ(R), equation (25) can be cast
in an interesting form by introducing the complex direction variable

ζ ≡ X + iY (26)

and the following complex function with zeros at each of the optic axes:

A(ζ ) ≡ (1− ζ 2)2 − 4ζ 2 β

α
= (ζ 2 −X2

c)

(
ζ 2 − 1

X2
c

)
. (27)
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Then the isogyres (now denotedσ(ζ )) satisfy

ImA(ζ ) exp{−2iσ(ζ )} = 0. (28)

From this we can find a functionB(ζ ) whose real and imaginary parts have the isogyres as
their contours. For if we choose exp−iσ = B ′(ζ ) = 1/

√
A, then∇ReB = {cosσ, sinσ } and

∇ImB = {− sinσ, cosσ }. The function is

B(ζ ) =
∫ ζ

0

dζ√
A(ζ )

= XcF

(
arcsin

ζ

Xc
, X4

c

)
(29)

whereF denotes the elliptic integral (we use the convention inMathematicaTM (Wolfram
1991)).

Figure 7. Isogyres in the projective plane, calculated for
nx = 1.563,ny = 1.58,nz = 1.883; the optic axes are
atXc = 0.133, corresponding to an angleθc = 13.4◦.

Figure 7 shows the orthogonal net of polarization directions, computed from (29), for a
range that includes the two optic axes in the northern hemisphere of thes plane. The pattern
is dominated by the singularities at±Xc. Around a circuit of each singularity, each of the two
polarizations rotates byπ in the same sense as the circuit. This means that each singularity
has index +1/2; it cannot be otherwise, because the total index of singularities of a line field
on a sphere must, by the ‘hairy sphere’ theorem (Spivak 1975, Iyanaga and Kawada 1968), be
+2 (the Euler–Poincaré characteristic of a sphere), and so each of the four identical optic-axis
singularities must have index +1/2. In one classification of the singularities of line fields
(Berry and Hannay 1977, Berry and Upstill 1980), these are ‘lemons’; the terminology arose
in connection with umbilic points on surfaces (Darboux 1896, see also the historical remarks
in Berry 1989).

In the image intensity (18), the first factor can be written explicitly by means of (28) as

sin2 {2 (γ − σ(R))} = 1

2

{
1 +

[
Im 2A(ζ )− Re2A(ζ )

]
cos 4γ − 2ReA(ζ )ImA(ζ ) sin 4γ∣∣A(ζ )∣∣2

}
.

(30)

Now the full intensity can be calculated from (18), (16), (10) and (22), and rendered as
density plots to simulate the observations (e.g., those in figure 3). Three such simulations,
for different values of the polarizer orientationγ , are shown in figure 8(a–c); they should be
compared with the experimental figure 3(a), whose conditions they have been chosen to match,
as will be explained in section 6.

The most striking features are the two bullseyes, centred on the optic axes. Figure 8(d)
shows a magnification of one of these. We have already mentioned the broad black brush
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(a) (b)

(c) (d)

Figure 8. Simulations of the conoscopic figures, calculated from equation (18) as density plots of
the intensityI (R, γ ) for the same conditions as in figure 7, withλ = 0.546µm, L = 100µm.
(a) γ = 0; (b) γ = π/8; (c) γ = π/4. A magnification of one of the bullseyes in (b) is shown in
(d).

through the centre. This has its origin in the first factor in (18). During a circuit of the
bullseye, the black brush will be encountered wheneverσ(R) = γ (moduloπ/2). Because
the singularity of the pattern of polarizations has index 1/2, σ(R) changes byπ around such
a circuit, so the brush condition will be satisfied twice. Now, close to the bullseye the change
in σ(R) is uniform for a circular circuit; this follows from the square root singularity in (29)
with (27). Therefore these two encounters will be on opposite sides of the bullseye, resulting
in in a single black line passing through it smoothly. In local polar coordinatesRlocal, φlocal,
the intensity of light emerging near the bullseye is

I (R, γ ) ≈ sin2(2γ − φlocal) sin2(DRlocal) (R ≈ {Xc, 0}) (31)

where in the second factorD is a constant and the circularity of the cones (equation (24)) has
been invoked.

So, the black brushes are consequences of the fact that the eigenvectorsd of Maxwell’s
equation (19) are not single-valued, but reverse round a circuit of each bullseye. The reversal
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corresponds to a sign change in each eigenvector, i.e. a phase change ofπ . Such sign changes
are universally present (Arnold 1978, Uhlenbeck 1976) during a circuit of a simple degeneracy
of a real symmetric matrix (the operator in (19) can be expressed this way by a simple
transformation), with two eigenvalues that coincide linearly. They are the simplest example
of a geometric phase (Pancharatnam 1956, Berry 1984, Shapere and Wilczek 1989), and
mathematically identical to the sign change on rotation of quantum particles with half-integer
spin (Silverman 1980); that is why we call the black lines fermion brushes. In optics this fact
that the polarization states have 4π spinor symmetry, even though photons are spin-1 particles,
has been demonstrated experimentally (Bhandari 1993a, 1997).

We emphasize that the fermion brushes occur here because the foil we use is biaxially
anisotropic. If the material were uniaxial, as in plastic threads made by stretching in one
direction, rather than two, this would correspond to confluence of the two optic axes, where
the singularities would each have strength +1 instead of +1/2 (the total index on thes sphere
would still be +2). Then the eigenvectors s would be single-valued, and the brush condition
from (18) would be satisfied four times, rather than twice, in a circuit of each axis. Therefore
each bullseye would be traversed by a black cross rather than a single black line, as is well
known for uniaxial materials (Born and Wolf 1959) (in (31) this situation can be described
locally by replacingφlocal by 2φlocal).

Bullseyes are not the only singularities of polarization optics. Consider propagation
through the foil as described by a 2×2 unitary (Jones) matrixU, depending onR, whose
eigenangles are± 1

21χ(R) (equation (16)). Degeneracies ofU are the dark rings of the
conoscopic figures, where121χ is a multiple ofπ ; if the multiple is evenU has eigenvalues +1,
and if it is odd U has eigenvalues−1 (Bhandari and Love 1994). Special among these
are the bullseyes: points inR where1χ = 0 (eigenvalues +1) because of the equality
(degeneracy) of the two refractive indicesn±. A different sort of singularity, observed in
interference experiments (Bhandari 1992a, b, 1993b) and yielding a phase change of 2π rather
thanπ , occurs when two interfering polarization states become orthogonal, so that according
to Pancharatnam’s definition (Pancharatnam 1956) a relative phase cannot be defined. In the
present context these singularities are the rows of bright points of conoscopic figures between
crossed polarizers (where the ‘anti-isogyres’cross the bright rings) or the points of zero intensity
between parallel polarizers.

6. Characterizing the foil

We seek the three refractive indicesnx, ny, nz. Many precise methods are available for this,
described in detail in standard texts (Pockels 1906, Hartshorne and Stuart 1960, Bloss 1961).
Our aim here is to show how a rough estimate ofnx , ny andnz can be obtained with simple
naked-eye observations. The three indices differ by small amounts, i.e. in equation (7)α � 1
andβ � 1. Therefore the average index, which determines optical effects not involving
polarization, can be chosen asny . We measured this by the longitudinal shift of an image
viewed through a stack of foils, with the films wetted with oil to reduce reflections from the
interfaces; the result wasny = 1.57± 0.01, identical to the tabulated value for polycarbonate
(Kroschwitz 1987).

The remaining two refractive indices can be determined as follows. First, by measuring
the angle 2θexternalbetween the bullseyes, the ratioα/β can be obtained from (21), using Snell’s
law for the refraction correction relatingθexternalto the directionθc of the optic axes in the foil:

sinθexternal= ny sinθc. (32)

For the foil that generated the bullseyes in figure 3(a), we measuredθexternal = (24± 1)◦,
giving α/β = 0.07. Second, the phase difference between the two waves travelling normal to
the foil can be determined from the numberN of fringes between the bullseye (X = Xc) and
the centre of the pattern (atX = 0) where the two waves have zero phase difference.N need
not be an integer, and is easiest to estimate by counting dark fringes. From equations (15) and
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(16), this gives

ny − nx = Nλ

L
. (33)

From figure 3(a),N ≈ 3.1, and since the foil has thickness 0.1 mm we find, forλ = 0.546µm,
ny − nx = 0.017.

Collecting these results, for the foil we used (Niceday Write-on OHP film) we find

nx = 1.553 ny = 1.57 nz = 1.88. (34)

Although two of the values are close together, the rather large angle between the optic
axes indicates that the foil is far from uniaxial. The large index corresponds to waves whose
D vector is normal to the foil.

At this point we encounter an annoying ambiguity, related to the ordering of the refractive
indicesnx, ny, nz, and known in the literature as the problem of the optic sign (Bloss 1961).
The observation of bullseyes rules out the possibility that the intermediate index corresponds
to the direction normal to the foil (if it did, the optic axes would lie in the plane of the foil);
this motivated our conventional choice ofny as the intermediate index. For the remaining
indices, we made the assumptionnx < nz (equation (6)), that is, the smallest refractive index
corresponds to waves polarized in the plane of the foil. But what if the opposite is true,
i.e. nx > nz? Thenα andβ would both be negative; but this would leave unaffected the
ratio determining the axisθc according to (21). Incorporating the measurement of the fringe
numberN , we find that ifa andb are small but otherwise arbitrary, the following two situations
cannot be distinguished by the pattern of bullseyes they produce:{

(ny − a)(= nx), ny, (ny + b)(= nz)
}

{
(ny − b)(= nz), ny, (ny + a)(= nx)

}
.

(35)

If a andb are different, these represent physically different materials. We think that this
ambiguity could be resolved only by a much more accurate experiment than those envisaged
here, equivalent to directly measuring the indicesnx andny by the lateral shifts of images
seen through a stack of foils, usingx- andy-polarized light, and seeing which is the larger. In
the present case, the alternative determination gives physically unacceptable indices, namely
1.60, 1.58 and 1.28 (the lowest value—less than that of water—is too small for a plastic).
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Figure 9. Colour image of conoscopic interference in white light for a single bullseye.


